"A Comparison of Skin Lesions’ Diagnoses Between AI-Based Image Classification, an Expert Dermatologist, and a Non-Expert" Featured in Diagnostics
Abstract
Background/Objectives: This study aims to evaluate and compare the diagnostic accuracy of skin lesion classification among three different classifiers: AI-based image classification, an expert dermatologist, and a non-expert. Given the rising interest in artificial intelligence (AI) within dermatology, it is crucial to assess its performance against human expertise to determine its viability as a reliable diagnostic tool.
Methods: This reader study utilized a set of pre-labeled skin lesion images, which were assessed by an AI-based image classification system, an expert dermatologist, and a non-expert. The accuracy of each classifier was measured and compared against the ground truth labels. Statistical analysis was conducted to compare the diagnostic accuracy of the three classifiers.
Results: The AI-based image classification system exhibited high sensitivity (93.59%) and specificity (70.42%) in identifying malignant lesions. The AI model demonstrated similar sensitivity and notably higher specificity compared to the expert dermatologist and non-expert. However, both the expert and non-expert provided valuable diagnostic insights, especially in classifying specific cases like melanoma. The results indicate that AI has the potential to assist dermatologists by providing a second opinion and enhancing diagnostic accuracy.
Conclusions: This study concludes that AI-based image classification systems may serve as a valuable tool in dermatological diagnostics, potentially augmenting the capabilities of dermatologists. However, it is not yet a replacement for expert clinical judgment. Continued improvements and validation in diverse clinical settings are necessary before widespread implementation.
Most Recent News
- Canfield’s VECTRA® WB360 is on Wheels! Australian Skin Cancer Foundation Launches New 3D Skin Check Mobile Clinic
- VISIA® Wins Best Imaging Device in MedEsthetics’ Readers’ Choice Awards!
- Canfield Scientific Concludes Successful Innovations in Imaging: A Canfield Symposium in Berlin
- Canfield Scientific’s Clinical Imaging Services Support BirchBioMed Inc.’s Phase II / III Scar Treatment Trial